54 research outputs found

    Tsx Produces a Long Noncoding RNA and Has General Functions in the Germline, Stem Cells, and Brain

    Get PDF
    The Tsx gene resides at the X-inactivation center and is thought to encode a protein expressed in testis, but its function has remained mysterious. Given its proximity to noncoding genes that regulate X-inactivation, here we characterize Tsx and determine its function in mice. We find that Tsx is actually noncoding and the long transcript is expressed robustly in meiotic germ cells, embryonic stem cells, and brain. Targeted deletion of Tsx generates viable offspring and X-inactivation is only mildly affected in embryonic stem cells. However, mutant embryonic stem cells are severely growth-retarded, differentiate poorly, and show elevated cell death. Furthermore, male mice have smaller testes resulting from pachytene-specific apoptosis and a maternal-specific effect results in slightly smaller litters. Intriguingly, male mice lacking Tsx are less fearful and have measurably enhanced hippocampal short-term memory. Combined, our study indicates that Tsx performs general functions in multiple cell types and links the noncoding locus to stem and germ cell development, learning, and behavior in mammals

    FlexOracle: predicting flexible hinges by identification of stable domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein motions play an essential role in catalysis and protein-ligand interactions, but are difficult to observe directly. A substantial fraction of protein motions involve hinge bending. For these proteins, the accurate identification of flexible hinges connecting rigid domains would provide significant insight into motion. Programs such as GNM and FIRST have made global flexibility predictions available at low computational cost, but are not designed specifically for finding hinge points.</p> <p>Results</p> <p>Here we present the novel FlexOracle hinge prediction approach based on the ideas that energetic interactions are stronger <it>within </it>structural domains than <it>between </it>them, and that fragments generated by cleaving the protein at the hinge site are independently stable. We implement this as a tool within the Database of Macromolecular Motions, MolMovDB.org. For a given structure, we generate pairs of fragments based on scanning all possible cleavage points on the protein chain, compute the energy of the fragments compared with the undivided protein, and predict hinges where this quantity is minimal. We present three specific implementations of this approach. In the first, we consider only pairs of fragments generated by cutting at a <it>single </it>location on the protein chain and then use a standard molecular mechanics force field to calculate the enthalpies of the two fragments. In the second, we generate fragments in the same way but instead compute their free energies using a knowledge based force field. In the third, we generate fragment pairs by cutting at <it>two </it>points on the protein chain and then calculate their free energies.</p> <p>Conclusion</p> <p>Quantitative results demonstrate our method's ability to predict known hinges from the Database of Macromolecular Motions.</p

    A Genetic Signature of Spina Bifida Risk from Pathway-Informed Comprehensive Gene-Variant Analysis

    Get PDF
    Despite compelling epidemiological evidence that folic acid supplements reduce the frequency of neural tube defects (NTDs) in newborns, common variant association studies with folate metabolism genes have failed to explain the majority of NTD risk. The contribution of rare alleles as well as genetic interactions within the folate pathway have not been extensively studied in the context of NTDs. Thus, we sequenced the exons in 31 folate-related genes in a 480-member NTD case-control population to identify the full spectrum of allelic variation and determine whether rare alleles or obvious genetic interactions within this pathway affect NTD risk. We constructed a pathway model, predetermined independent of the data, which grouped genes into coherent sets reflecting the distinct metabolic compartments in the folate/one-carbon pathway (purine synthesis, pyrimidine synthesis, and homocysteine recycling to methionine). By integrating multiple variants based on these groupings, we uncovered two provocative, complex genetic risk signatures. Interestingly, these signatures differed by race/ethnicity: a Hispanic risk profile pointed to alterations in purine biosynthesis, whereas that in non-Hispanic whites implicated homocysteine metabolism. In contrast, parallel analyses that focused on individual alleles, or individual genes, as the units by which to assign risk revealed no compelling associations. These results suggest that the ability to layer pathway relationships onto clinical variant data can be uniquely informative for identifying genetic risk as well as for generating mechanistic hypotheses. Furthermore, the identification of ethnic-specific risk signatures for spina bifida resonated with epidemiological data suggesting that the underlying pathogenesis may differ between Hispanic and non-Hispanic groups

    Sequential Neural Processes in Abacus Mental Addition: An EEG and fMRI Case Study

    Get PDF
    Abacus experts are able to mentally calculate multi-digit numbers rapidly. Some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor strategy during abacus mental calculation. However, no study up to now has attempted to dissociate temporally the visuospatial neural process from the visuomotor neural process during abacus mental calculation. In the present study, an abacus expert performed the mental addition tasks (8-digit and 4-digit addends presented in visual or auditory modes) swiftly and accurately. The 100% correct rates in this expert’s task performance were significantly higher than those of ordinary subjects performing 1-digit and 2-digit addition tasks. ERPs, EEG source localizations, and fMRI results taken together suggested visuospatial and visuomotor processes were sequentially arranged during the abacus mental addition with visual addends and could be dissociated from each other temporally. The visuospatial transformation of the numbers, in which the superior parietal lobule was most likely involved, might occur first (around 380 ms) after the onset of the stimuli. The visuomotor processing, in which the superior/middle frontal gyri were most likely involved, might occur later (around 440 ms). Meanwhile, fMRI results suggested that neural networks involved in the abacus mental addition with auditory stimuli were similar to those in the visual abacus mental addition. The most prominently activated brain areas in both conditions included the bilateral superior parietal lobules (BA 7) and bilateral middle frontal gyri (BA 6). These results suggest a supra-modal brain network in abacus mental addition, which may develop from normal mental calculation networks

    Function of the Active Site Lysine Autoacetylation in Tip60 Catalysis

    Get PDF
    The 60-kDa HIV-Tat interactive protein (Tip60) is a key member of the MYST family of histone acetyltransferases (HATs) that plays critical roles in multiple cellular processes. We report here that Tip60 undergoes autoacetylation at several lysine residues, including a key lysine residue (i.e. Lys-327) in the active site of the MYST domain. The mutation of K327 to arginine led to loss of both the autoacetylation activity and the cognate HAT activity. Interestingly, deacetylated Tip60 still kept a substantial degree of HAT activity. We also investigated the effect of cysteine 369 and glutamate 403 in Tip60 autoacetylation in order to understand the molecular pathway of the autoacetylation at K327. Together, we conclude that the acetylation of K327 which is located in the active site of Tip60 regulates but is not obligatory for the catalytic activity of Tip60. Since acetylation at this key residue appears to be evolutionarily conserved amongst all MYST proteins, our findings provide an interesting insight into the regulatory mechanism of MYST activities

    Regulatory RNAs and chromatin modification in dosage compensation: A continuous path from flies to humans?

    Get PDF
    Chromosomal sex determination is a widely distributed strategy in nature. In the most classic scenario, one sex is characterized by a homologue pair of sex chromosomes, while the other includes two morphologically and functionally distinct gonosomes. In mammalian diploid cells, the female is characterized by the presence of two identical X chromosomes, while the male features an XY pair, with the Y bearing the major genetic determinant of sex, i.e. the SRY gene. In other species, such as the fruitfly, sex is determined by the ratio of autosomes to X chromosomes. Regardless of the exact mechanism, however, all these animals would exhibit a sex-specific gene expression inequality, due to the different number of X chromosomes, a phenomenon inhibited by a series of genetic and epigenetic regulatory events described as "dosage compensation". Since adequate available data is currently restricted to worms, flies and mammals, while for other groups of animals, such as reptiles, fish and birds it is very limited, it is not yet clear whether this is an evolutionary conserved mechanism. However certain striking similarities have already been observed among evolutionary distant species, such as Drosophila melanogaster and Mus musculus. These mainly refer to a) the need for a counting mechanism, to determine the chromosomal content of the cell, i.e. the ratio of autosomes to gonosomes (a process well understood in flies, but still hypothesized in mammals), b) the implication of non-translated, sex-specific, regulatory RNAs (roX and Xist, respectively) as key elements in this process and the location of similar mediators in the Z chromosome of chicken c) the inclusion of a chromatin modification epigenetic final step, which ensures that gene expression remains stably regulated throughout the affected area of the gonosome. This review summarizes these points and proposes a possible role for comparative genetics, as they seem to constitute proof of maintained cell economy (by using the same basic regulatory elements in various different scenarios) throughout numerous centuries of evolutionary history

    Neural Correlates of Visual Motion Prediction

    Get PDF
    Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects’ performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities
    • …
    corecore